American University of Beirut
 MATH 202
 Differential Equations
 Spring 2009

quiz \# 1
Exercise 1 (15 points) Show that the IVP: $\frac{d y}{d x}=\sqrt{1-y^{2}}, y(0)=1$, has infinitely many solutions; does it contradict the existence and uniqueness theorem? justify.

Exercise 2 a. (10 points) solve the differential equation: $\frac{d y}{d x}=y-y^{2}$.
b. (5 points) are the solutions found in part a) all the solutions? justify.
c. (5 points) give the solution of the IVP: $\frac{d y}{d x}=y-y^{2}, y(0)=-1$; and give the interval of definition I.

Exercise 3 (15 points) Solve the IVP: $\frac{d y}{d x}-\frac{2}{x} y=x^{2}+\frac{3}{x}, y(1)=2$
Exercise 4 (15 points) Use an appropriate substitution to solve the differential equation

$$
\frac{y^{\prime}}{y}+\ln y=\sqrt{1-e^{x}}
$$

Exercise 5 (15 points) Integrate $g(x, y, z)=x \sqrt{y^{2}+4}$ over the surface cut from the parabolic cylinder $y^{2}+4 z=16$ by the planes $x=0, x=1$, and $z=0$.

Exercise 6 (20 points) Let C be the curve lying on the surface $z=y^{2}+1$, whose sides lie vertically above the triangle in the $x y$-plane with $x=0, y=0, x+y=1$ (see figure).

Find $\oint_{C} 3 x z d x+y d y+x^{2} d z$
i. directly (you need to parameterize three curves on the surface!)
ii. by using Stoke's theorem

